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CHAPTER 6

VALUATION OF COMPLEX
SECURITIES AND OPTIONS

WITH PREFERENCE RESTRICTIONS

6.1. In Chapter 4, we made assumptions on the return distri-
butions in order to derive linear valuation relations. In this chapter,
we will first discuss valuation principles for complex securities in the
framework of Chapter 5 without special assumptions on either the
return distributions or individuals’ utility functions. We will then de-
rive explicit valuation expressions for risky assets under preference
and distribution restrictions. In particular, the price of a European
call option written on a stock when individuals’ utility functions ex-
hibit constant relative risk aversion and the option’s underlying asset
has a payoff structure that is jointly lognormally distributed with
the aggregate consumption is explicitly computed. We also apply
the pricing formula for a European call option to study the pricing
of risky corporate debt. In the last section of this chapter, we derive
a pricing relation similar to the CAPM for a particular class of risky
assets.

The pricing relations derived in this chapter provide additional
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152 Foundations for Financial Economics

testable propositions concerning the pricing of complex securities
such as common stocks and options. Some of these propositions
will be empirically examined in Chapter 10.

6.2. Assume that individuals have homogeneous beliefs x, and
utility functions that are time-additive and state—independent, de-
noted by uyp and v;, and assume that these utility functions are
increasing, strictly concave, and differentiable. There are N 41
securities traded, indexed by 7 = 0,1,...,N. Individuals’ time-0
endowments are units of time—0 consumption good and shares of
traded securities. Security j is represented by its state dependent
payoff structure z;,. The O-th security is a riskless discount bond
with zq, = I for all w e (0.

We assume that the equilibrium allocation is Pareto optimal.
‘We recall from Chapter 5 that under this condition, a representative
agent with increasing and strictly concave utility functions 1y and
uj can be constructed, and the price of a primitive atate contingent
claim ean be expressed as

_ ot (Cw) Yw e 0, 6.2.1
¢w— UO(CU) wE ( M ‘)

where ¢, is the state price for state w. A complex security may be
viewed as a portfclio of elementary state contingent claims. Thus
the price for security 7 is

=Y $uTiu- (6.2.2)
wEll
Substituting (6.2.1) into (6.2.2) for ¢, gives

S;=E [;1((3)) } (6.2.3)

where we have used Z; to denote the random time-1 payoff of se-
curity §. For the case of a riskless unit discount bond — a complex
security that pays one unit of consumption at time 1 in all states, we

have oA
So=F [“,I(C) ] i (6.2.4)
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As Sp is the price of a unit discount bond, the riskless interest rate
ryis
N (6.2.5)
f So . o
By the strict monotonicity of the utility functions, S > 0. This
implies that r; > —1. Substituting (6.2.5) into {6.2.4) gives

1 u’l(é)
=" {—% ( CO)] . (6.2.6)

Dividing both sides of (6.2.3) by S; and using the definition of
covariance, we can write

Fomp,l=— "'r(é} 7 vlE o (A
E[ i f] - (E [ur:(co):l) Co (’.J: “1(0)/%(‘3‘0))s {6-2-7)

where F; = #;/5; ~ 1 is the rate of return of security j. Substituting
{6.2.6) into (6.2.7) gives an equilibrium relation for the risk preminms
on securities:

BIF; = rj] = —(1+ r)Cov(f;, i (E)/uh(Co)).  (6.2.8)

By the fact that u; is strictly concave, the risk premium of a secu-
rity is positive if and only if its random payoff at time 1 is positively
correlated with the time-1 aggregate consumption. Note that in a
two-period (period 0 and period 1) economy, by the strict mano-
tonicity of utility functions, the time—1 aggregate consumption Cis
equal to the time-1 aggregate endowment, which in turn is equal to
time-1 aggregate wealth M. Therefore, (6.2.8) can be written as

Elf; = vyl = ~(1+ r7)Cov(F;, u1 (M) /uy(Co)). (6.2.9)

That is, the risk premium of a security is positive if and only if
its time~1 random payoff is positively correlated with the tirne-1
aggregate wealth. The intuition behind this result is the same as
that of the Capital Asset Pricing Model. One unit of consumption
in a state where the aggregate resource is abundant is less valuable
than one unit of consumption in a state where the aggregate resource
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is scarce. Therefore, a security that pays more in states where the
aggregate consumption/wealth is low is more valuable than a security
that pays more in states where the aggregate consumption/wealth is
high, ceteris paribus. As a result, the price for the former will be
higher than that for the latter, and the rate of return on the former
will be lower than that on the latter.

The market porticlio is a portfolio of traded securities. Thus its
rate of return 7, must also satisfy (6.2.9):

Blfm — rf) = ~ (1 + r;)Cov(Fm, vy (M)} /15(Co)). {6.2.10)

Relation (6.2.10) implies that the risk premium on the market portfo-
lio must be strictly pesitive, as rp > —1 and uj is strictly decreasing
so that Cov(F,.,u} (M)) is strictly negative. (Readers should com-
pare this with the result of Section 4.14.) Substituting (6.2.10) into
(6.2.9) gives

Cov (7, u4 (1))

By —ril = Cov(Fm, u’i(]\'&'))

Elfm—ry]. (6.2.11)

In equilibrium, the risk premium of security 7 is proportional to that
of the market portfolio. The proportionality is equal to the ratio of
the covariance of 7; and v} {M} and the covariance of f, and uf(M).

6.3. We will now specialize the pricing relation of (6.2.11) by
considering a class of utility functions. Assume that individuals’
utility functions for time-1 consumption are power functions:

wi(z) = g (Ai+ Ba) b (6.3.1)

and that there is a riskless asset. Note that B is assumed to be con-
stant across individuals. We also assume that the u;’s are increasing
and strictly concave over the relevant region. Recall from Chapter 5
that the Pareto optimal sharing rules for time-1 consumption are
iinear in this case and can be attained if there is a riskless asset and
if all assets are traded. Therefore, by the assumption that individ-
uals are endowed only with holdings of shares of traded securities
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and time—0 consumption good in a securities markets economy, the
equilibrium allocation is Pareto optimal. Moreover, Chapter 5 also
shows that there exists a representative agent whese utility function
for time~1 consumption is a power function with the same 3

1

w(z) = {4+ Bz)'"3, (6.3.2)

where A= $"1_ A;. Hence {6.2.11) becomes

f=l

Cov(#;, (A + BM)™3)
Cov{fm, (A + BM ";3')

Blfy—ry] = Efm — ry]. (6.3.3)

Note that when B = —1, individuals’ utility functions are quadratic
and (6.3.3) becomes the familiar CAPM relation. When B = —1/2,
the representative agent’s utility function for time~1 consumption is

a cubic function: 2 1
ug (z) = _E(A - EZ)S.

The marginal utility in this case is
i 1 2
ui{z) = (A~ EZ) 1

50 uy is increasing and strictly concave for z < 24. Thus if M < 24,
(6.3.3) becomes

Cov(F;, (A — M/2)%) B —r/]
Cov{Fm (A — 2tj22) '™ !
_ ACov(F, Fm)Wmo ~ 3Cov(F;, 7 )W2

ml pare
Effm — ],
AVar( )Wy — TCor o P2 WEy 0~ 71}

E[f;—rf=

(6.3.4)
where Wmo is the time—0 total value of traded securities. From (6.3.4)
we notice that the risk premium of risky asset ; depends not only
upon the covariance of its return with the return on the market port-
folio but also upon Cov(F;, 72,), which we term coskewness. The risk
premium on asset j is higher the higher the covariance Cov(7;,rn)
and the lower the coskewness with the market portfolic. The latter
of these two effects is & consequence of the fact that a cubic utility
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function exhibits preference towards the skewness of time-1 random
consumption. The higher the coskewness of a security’s return with
that of the market portfolio, the more attrastive it is to the individu-
als, ceteris paribus, Therefore, it will sell for a higher price and thus
will have a lower expected rate of return.

6.4. Chapter 5 showed that call opticns help to achieve nonlin-
ear sharing rules. Moreover, the prices of call options on aggregate
consumption are sufficient to price any complex security in an al-
locationally efficient securities market where individuals’ preferences
are represented by time~additive, increasing, and strictly concave von
Neumann-Morgenstern utility functions. In Sections 6.5 through 6.8,
we will discuss certain properties of option prices that can be estab-
lished by using purely arbitrage arguments, Section 6.9 gives some
comparative statics of option prices as functions of their underlying
asset prices and exercise prices. In later sections, an option pric-
ing formula will be derived under the assumption that the payoff of
the option’s underlying asset and time—1 aggregate consumption are
jointly lognormally distributed and that the representative agent’s
utility functions exhibit constant relative risk aversion.

6.5. Recall that a Buropean call option is a security that gives
its holder the right to purchase a share of its underlying security at
a fixed exercise price on the maturity date of the option. Let Z;(k)
be the time—1 payoff from a European call on one share of the j-
th security maturing at time 1 with an exercise price of k, and let
2:(S;, k) be the price of this call at time O when its underlying stock
price is S;, Since an option gives its holder the right but not the
obligation to exercise on the maturity date,

v [Fi—k £E— k>0,
5k} = {O otherwise,

where Z; is the random payoff of a share of the j~th security.
We claim that

27 (87, %) = max(S; — k/(1+r;),0], {6.5.1)

|
\
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independent of individuals’ utility functions and payoff distributions.
The inequality will be strict if the probability that the option will
be exercised is strictly between 0 and 1. We will prove now the
strict inequality. Consider the following strategy: short sell one share
of security 7, buy one European call written on security 7 with an
exercise price k maturing at time 1 and lend /(14 r;) dollars at the
riskless rate. This strategy has an initial cost equal to py(5;, k) —
S; + k/{1 + r¢) and has a time-1 payoff:

Bj—k—-Zj+k=0 iHz;2k
—Z;+ k>0 ifE; <k

The time-1 payoff of this strategy is nonnegative and is strictly pos-
itive with a strictly positive probability, since there is a strictly pos-
itive probability that £; < k. Therefore, its initial cost must be
strictly positive to prevent something being created from nothing.
That is, we must have

Pi(S5, k) = Sj+ k/(1+ 1) > O,
which is equivalent to
pi(S;, k) > 8; — Ef(1+ry). (6.5.2}

Lastly, since a holder of the option only has the right and not the
obligation to buy a share of its underlying security at the exercise
price, the price of the option must be nonnegative. Moreover, by
assumption there exists a strictly positive probability that the option

will be exercised. Therefore, p;(S;, k) > 0. This observation together
with (6.5.2) gives

pi (S5, k) > max(S; — k/(1 + r;),0)].

which was to be shown. The intuition behind this inequality is as
follows. The present value of an obligation to buy a share of security
7 at time 1 at a price k is S; —k/{1+r;). When there exists a strictly
positive probability that Z; will be strictly less than k, the option
rot to buy has a strictly positive value. Thus the call option must be
worth strictly more than 8; — k/(1+ r;). On the other hand, there
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exists a strictly positive probability that the option will be exercised.
Hence, p;(S;, k) > 0.

6.6. In Section 5.19, by assuming that an option price is a twice
differentiable function of its exercise price, we showed that an option
price is a convex function of its exercise price. This property, as it
urns out, holds more generally.

We want to show that

aps(Si, k) + (1 — )p3(57, ) 2 pi(Si- B, (88.1)

where k = ak + (1 — &)k and « € (0,1). Consider the strategy
of buying & shares of the call option with an exercise price k and
(1 — &) shares of the call option with an exercise price £, and short
selling a share of call option with an exercise price k. Without loss
of generality, assume that % > k. The time~1 payoff of this strategy
is

0 fE <k
a(F; — k) >0 itk < <k,
(1-a)(k~2)>0 k< <k
0 if & >k,

which is nonnegative. Thus,
ap; (S5, k) + (1 - @)ps(S;, B) — p3(55, k) 2 0,

which is just (6.6.1). When there is a strictly positive probability
that £; € (k, &}, the weak inequality becomes a strict inequality.

You are asked to prove in Exercise 6.2 that p;(5;, k) is a de-
creasing function of k. Hence p;(S;,k) is a decreasing and convex
function of its exercise price.

In a frictionless market, buying an option on two shares of se-
curity 7 with an exercise 2k should be equal to buying two options
with an exercise price k on security j. To see this, we simply note
that the random payoffs of the former are identical to those of the
latter.

6.7. An option on a positively weighted portfolio of securities
with an exercise price k is less valuable than a positively weighted
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portfolio of options with equal exercise prices k. Consider a positively
weighted portfolio of securities with weights ct;, j = 1,..., N, where
o; denotes the portiolio weight on security 7. Note that

N
Eaj =1 a;j=>0
Just

The time—0 cost and time—1 random payoff of this portfolio are

and

respectively. Let p*(S°,k} be the price of & European call written
on the portfolio of securities with an exercise price k that expires at
time 1. The time~1 random payoff of this option is

N
max[z cx_.,-:'f;,- - k,Ol.
=1

Sinee max[z,0] is a convex function of z, by the Jensen’s inequality
we have

N N
ma.x[z o;%; — k,0] € Za,- max[Z; — k,0].
=1 i=1

Note that the right—hand side of the inequality is the time-1 ran-
dom payoff of a portfolio of call options on individual securities with
identical exercise prices k. Thus

N
PSR <Y oipi(Si, k),
i=1

where the inequality is strict if and only if there exist some j and 7'
such that &; < k < &5 with a strictly positive probability. Suppose
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that all securities have payoffs such that all individual options with
an exercise price k will be optimally exercised simultaneously. Then a
positively weighted portfolio of options on individual securities with
an exercise price &k will be worth just as much as an option on a
portfolio of securities with the same exercise price and using the
same weights. Suppose on the other hand that some options on
individual securities will not be optimally exercised simultaneously.
A portfolio of options, unlike an option on a portfolio of securities,
gives its holder an “option” to exercise different options individually.
Thus a pasitively weighted portfolio of call options is strictly more
valuable than a calt option on a portfolio of securities with the same
weights.

6.8. The holder of 2 European put option has the right to sell
its underlying security at the exercise price on the maturity date. Let
P;(5;,k%) be the time-0 price of 2 Furopean put written on security
§ with exercise price k and maturity date 1, when the current price
of security 7 is §j. The time-1 payoff of this put option is

{k—5j>0 if £; < k,
v} if £ > k.
The price of & Kuropean put can be computed from the prices of
its underlying security and its Europear call counterpart through a
relation called put-call parity.

We claim that P;(S;, k) = k/{1+r7)—8;+p;(8;,k). Tosce this,
consider the following strategy: lend k/(1+ r;) at the riskless rate,
short sell one share of security 7, and buy one share of the European
call with exercige price k. The time-1 payoff of this strategy is

{Ic—-i,- if £; < &,
0 ifhk<E,
which is cleazly the payoff of 2 European put with exercise price k.
To rule out arbitrage opportunities, two packages of financial assets
having the same payoffs muat sell for the same price. Hence our
assertion follows. It is easy to see that P;(S;,k) is an increasing
function of k. Alse, using arguments similar to those of Section 6.5,
we can get '

P;(8;,k) 2 moax[k/(1+ rs) - 55,0,
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You will be asked to verify these two relations in Exercise 6.3.
Given put—call parity and the facts that the price of a call is a
decreasing function of its exercise price and that the price of a put
is an increasing function of its exercise price, we have
8p;(S;, k) 1 8F;(S;,k) . 1

>
ok T i+ 8k = 14y’

when p;(S;, k) and P;(S;, k) are differentiable functions of k. More-
over, P;{5;, k) is also a convex function of k by put—call parity.

6.9, In the previous two sections, we have seen that a call price
is a decreasing and convex function of its exercise price. We will show
in this section that, fixing a return distribution on the underlying as-
set, the price of a call option is an increasing and convex function of
the price of its underlying asset. Readers are cautioned to note that
this relation is a comparative statics result and is not an arbitrage
relation, since different stock prices can not prevail contemporane-
ously.

Consider p;(5;, k). Assume the distribution of £;/S; is invariant
with respect to changes in S;. For example, if we increase S; to
S}, then Z; changes to S}%;/5;. We claim first that p;(S;, k) is
inereasing in S; and is strictly so if the probability that #; > k is
strictly pesitive. By the assumption that return distribution is held
fixed, we have

st

p5(S}, K) = SLps(55, kS;/55) (6.9.1)
E
st

2 2pi(S5,k) 2 py(5, k). (6.9.2)

1

Relation (6.9.1) follows since, given that the return distribution is
invariant to changes in Sy, the time~1 payoff of z call on security—7
with an exercise price & when security—j’s price is SJ': is equivalent
to the time-1 payoff of §}/S; shares of call options with an exercise
price kS;/S] when security j’s price is S;. Note that {6.9.1) amounts
to saying that the function p;(S;, k) is homogeneous of degree one in
S; and k. The first inequality of (6.9.2) follows since the call option
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price is a decreasing function of its exercise price. Finally, the second
inequality of (6.9.2) follows because S}/S; > 1 by assumption and
p5(S;, k) = 0. The second inequality of (6.9.2) is strict if there is a
strictly positive probability that £; > k, as then p;(Sy, k) > 0.
Next we want to show that p;{S;, k) is a convex function of 5;.
Let
8;=aS;+ (1—a)S] where a €(0,1).

To prove convexity, we must show that
C!p_.,'(S;-, k) + (1 - ‘x)p.‘l'(s;'3 k) z P (S'.‘l'? k)'

From the fact that p;(S5;, k) is 2 convex function of k for all pessible
3y

9pi (L, k) + (1 — Mpi (L, ks) = pi{Lks) Yy e(0,1), (693}

where k3 = vk + (1 — 4}z, Now take v = aSJ-!.é‘j, ky = k/S;, and
ke = k/5}. Multiplying both sides of (6.9.3} by 5; and recalling from
{6.9.1) that p;{S;, k) is homogeneous of degree one in §; and k,

ap;(Sj, 8iky) + (1 — a)p; (S}, Sika) 2 ps(S5, Siks).

Using the definitions of .§',-, ~, ki1, ks, and ks, this inequality can be
writien as

ap; (55, k) + (1 — a)p; (S}, k) 2 pi(55, k). (6.9.4)

The weak inequality of (6.9.4) will be strict if that of (6.9.3) is strict.
From Section 6.6, we know that (6.9.3) is a strict inequality if there
exists a strictly positive probability that Z; lies between ki and k;
or equivalently between k/S; and k/S}.

Figure 6.9.1 illustrates the general shape that a call option price
should have as a function of its underlying security price and its
exercise price, while holding constant the return distribution of its
underlying asset. Note that we have used (6.5.1) in Pigure 6.9.1.

6.10. In this section, a pricing formula for a Eurcpean call is
derived under conditions on individuals® preferences and on the joint

i

P b b R TR CAR S
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Pj(sj.k) *
P(Sj,k)

45°

-
0 k Sj

Figure 6.9.1: Call Option Price as a Function of Its
Underlying Stock Price

distribution of the time-1 aggregate consumption and the payoffs of
the option’s underlying asset.

Consider a two-period securities markets economy. Individ-
uals’ utility functions are time-additive extended power functions
with identical cautiousness as in (6.3.1). Moreover, assume that
23!:1 A; = 0. Recall that in a securities markets economy, an in-
dividual is endowed with time—0 consumption and ghares of traded
securities. From Sections 5.14 and 5.15, we know that the equilib-
rium allocation will be Pareto optimal, since optimal shating rules
are linear. Thus, a represcntative agent can be constructed with
power utility functions:

1 4.p
-8

zé—B + ¢

1
uo{zo) + u1(z) = 1-F

where p is the time preference parameter. Then {6.2.3) implies that

.\ -8
o]
{85, k) = pE | max(E; ~ k.0l (a]) - (6.10.1)



164 Foundations for Financial Economics

We will further assume that Z; and & are bivariate lognormally
distributed, that is, In £; and In € are bivariate normally distributed
with means {f;, i.) and variance-covariance matrix:

2 &
( L pco‘,crc)
T e ]
koif, &2

where & is the correlation coefficient of In Z; and In €. This assump-
tion implies that In(%;/5;) and In p(C/Cp)~® are bivariate normally
distributed with means

(5 pe) = (f; — I S;, ~Bji. + Inp+ Bln Cp)

and variance—covariance mabrix

a_? Kojoe Y _ a? —Bro;é,
KT ;0 0'3, —Bro;b, Bzé'f
Given the above distributional assumption, (6.10.1) can be writ-
fen as

4o pdoo
pi(S5, k) = .5‘,-[ [ (e = k/S;)e? f(z,y)d=dy, (6.10.2)
—oo Jln(k/8;}

where f(z,y) is the joint density function for Z = In(%;/5;} and § =
In p(C/Co)~B. Relation (6.10.2) may be rewritten as the difference
between two integrals

+oo  ptoo
psB = [ [ e g)dsdy
—co JIn(k/S;)
PR (6.10.3)
- kf eV f{z,y)d=dy.
—oo JIn(k/S;)

In the next section the two integrals are evaluated and the following
relations are obtained:

[++] oo — .
[7 7 st nay = oottty (2R 1 k), (60,9
—ooJa i)

3
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and
-] v+
f [ etV f (=, y)dzdy
—QQ Ja

6.10.5
(eﬂj+ﬂu+(“}+2"”i°'e+"'3)/2) N(—G + by ( )
s

+ ko, + 03,
i

where N{-) is the distribution function of a standard normal random
variable:

N(=)= # e 2y,
—oo
and 1
n(z) = ﬁe

is the standard normal density function. By setiing a = In(k/S;),
(6.10.4) may be used to evaluate the second integral on the right—
hand side of (6.10.3), and (6.10.5) may be used to evaluate the first
integral on the right side of (6.10.3) by setting a = In(k/S;).

It is easily verified that

E [p(é/Cg)-B] a= eMet el {6.10.6)

and that
. -B
E|Z, (—C—) = ghitbetloftnajoatol)/2 (6.10.7)

The left~hand side of (6.10.6) is equal to {1+r;)™%, since it gives the
present value of one unit of time~1 consumption in all states. Hence,

eeiv = (14 rp) 7N (6.10.8)
Also, (6.2.3) implies that the left-hand side of {6.10.7) is equal to 1.
Thus

Hitactloftinooctod)/t _ 4 (6.10.9)

Now substituting (6.10.4), (6.10.5), (6.10.8), and (6.10.9) into
(6.10.3) gives

Pi(S5, k) = S; N (8 + 0;) — (1 + 1) 1EN(Zy), (6.10.10)
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where (s /k
7= n( J'/ ) + (#J' + "CO-J'GG) . (6.10.11)
gj
Relations (6.10.8) and {6.10.9) also imply that
B+ oo, =In{l +rp) — %cr;“:. {6.10.12)
Thus (8.10.11) can be written as
7, = In(S;/k) -;111(1 +rp) %a_.,- (6.10.13)
i

Relations (6.10.10) and (6.10.13) are the well known Black-Scholes
option pricing formula that was originally derived by an arbitrage
argument in a continuous time economy under the assumption that
the stock price follows a geometric Brownian Motion and the instan-
taneous riskless interest rate is a known constant. Here we derived
this formula in & discrete time economy by making joint conditions
on the distributions as well as on the individuals’ preferences,

6,11. The derivations of (6.10.4) and (6.10.5) will be presented
in this section, which are adapted from the appendix of Rubinstein
(1976). Readers can skip this section without loss of continuity. The
derivations of these relations require evaluations of other indefinite
integrals over the marginal and conditional normal density functions.
The first relation to be derived is

f * f(e)de = N(=ZEh (6.11.1)

where f(z) is the marginal density function for in(%;/5;). The first
step in deriving relation (6.11.1) involves converting f(z) into stan-
dard normal density function and exchanging the limits of integra-
tion, which is a valid procedure since the density function of a stan-
dard normal random variable is symmetric around zero:

avpy

/:mf(z)dz: '[rf n(v)dv = f_m U n()de = N(FELA),

5 3
i
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The second evaluation is :

+oo B +oo 1 -1 2
j; e f(z)dz:/a mexp{i;?(z—ﬂj) + z}dz

=(e#j+a’7./2) [+oo 1 exp{i(z—(#"f‘a?))z}dz
Rl et A

=(e"""+°?/2)N(:-E£-_—Ei +05).
»
(6.11.2)

The third evaluation is

bl
f eV f(y|z)dy = exp{p. + n%‘{-(z - p5)+ -;—(1 - x%)el}, (6.11.3)
E

—00

where f{y[z) is the conditional density of In p(C/Cp)~P given that
In{Z;/8;) = z. Note that the conditional distribution of In .o(ér / C'o)"B
given that In{#;/S;) = z is 2 normal distribution with mean u, +
x{o./o;)(z— ;) and variance (1—x?)o2. Then the evaluation of the
left~hand side of (6.11.3) is equivalent to that of (6.11.2) by taking
a = —co and by appropriate parameter change.

Now we are prepared to derive (6.10.4). From {6.11.3) we can
write

j;-:o fa+°° e¥f(z,y)dzdy = '/; teo 7(2) j: 1::. & f(y|2)dydz

f teo FerSElEa)H(ie)o2f2
a

f(z)dz

=(e““+°3/2) L ex {_—l{z—( i+ ko)) 2
a o2 P 202 Hi e ’

where f(z) is the marginal density function for In({Z;/S5;). Relation
(6.10.4) follows by converting the density in the integral on the right~
hand side of the third equality to a standard normal density and
changing the limits of integration accordingly.
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Finally, we are prepared to derive relation {6.10.5). From (6.11.3)

f_::o f:m e flav)dady = f:m e*f(2) f:o & £ (]2)dydz

+00 EPr I — Y
zf c#a+",j (‘ F:)"'(l 2} '?/ze"f(z)dz

d
1

+o0 - — ;R jaamad)?
=ep,-+m+{af+2m,-ac+og)/z f 1 ?i}."(‘ pi=rajagmay] d

2.
a 0‘:,‘\;‘23?e

Relation (6.10.5) is then obtained by converting the density in the
integral on the right-hand side of the third equality into a standard
normal density and changing the limits of the integration accordingly.

6.12. The option pricing formula in Section 6.10 is derived in an
economy where individuals’ utility functions exhibit linear risk toler-
ance with identical cautiousness and where individuals are only en-
dowed with traded securitiea. In equilibrium, every individual holds
2 linear combination of the market portfolio and the riskless asset and
a Pareto optimal allocation is achieved. Therefore, if a call option
written on a security is introduced into the economy, no individual
will demand it in equilibrium. Equivalently, if the economy is in
equilibrinm when a call option is introduced, as long as the opticn is
priced according to (6.10.10) and (6.10.13), the original equilibrium
will not be upset. The option iz priced so that no individual will de-
mand it in equilibrium. In this context, an option has no allocational
role in equilibrium and is sometimes said to be a redundant esset.
Note that the above discussion applies not only to options but also
to any financial asset that is in zero net supply.

6.13. From (6.10.10) and (6.10.13), p;(8;, &) depends upon the
time—0 price of ita underlying asset S;, the exercise price k, the risk-
less interest rate ry, and the variance of In(Z;/5;). It does not de-
pend upon the mean of In(#;/8;), however. You will be asked in
Exercise 6.4 to verify the following comparative statics of p;(S;, k)
with respect to Sy, k, ry, and o;:

3pi(Sik) _ _

ok 1+r) 7 V(2 <0, (6.13.1)

Valuation of Complex Securities with Preference Restrictions 169

8p;(8s,k
P:;S: ) = N(Z +0;) >0, (6.13.2)
)
ap;(S;, k
P:e(»aw’.’ ) _ E(1+r;)"In(Z) > 0, (6.13.3)
H
Ap; {85,k
—_—p’cgr; ) (1 +1r)7%kN(Z) > 0. (6.13.4)

Relations (6.13.1} and (6.13.2) are confirmations of the general
discussions in Sections 6.6 and 6.9. Note that in computing (6.13.2},
we have assumed that the distribution of In(%;/S;) iz unchanged
when we vary S;. Relation (6.13.3) says that the higher the variance
of In(%;/5;), the more valuable the option is. This is so becanse an
option holder does not have an obligation to exercise — he only has
the right to do so. Hence, a higher o; allows a higher upside potentiat
for an option. Finally, the higher the riskless interest rate, the lower
the present value of the exercise price in the event of exercising at
time I, thus the more valuable the option is.

From {6.13.1), we can also get

9*p;(S;, k)

o =+ 1)oik) n(Z) > 0. {6.18.5)

That is, p;(S;, k) is a convex function of the exercise price, which is
a general property of call options proved earlier using an arbitrage
argument. From Section 5.19, we can interpret the right—hand side
of (6.13.5) to be the price density for a security that pays one unit of
consurnption at time 1 if and only if the payoff of security 7 is equal
to k at that time. This price density is always strictly positive.

6.14. The option pricing formula derived above can be applied
to study the pricing of risky corporate debt. Consider the economy
in Section 6.10. Suppose that firm j has one share of common stock
and a discount bond with face value k outstanding, with prices S;
and D, respectively. The discount bond matures at time 1. The
total time—1 earning of firm 7 is %;, which is assumed to be joint
lognormally distributed with 5’, the time-1 aggregate consumption,
with parameters as in Section 6.10. The present value of Z; is the
total value of the firm at time O and is denoted by V;. Note that
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V; = 8; + D;. The time~1 random payoff of the discount bond
is minf[Z;, k. When the firm is solvent at time 1, that is, when
£; 2 k, the bond holders receive the face value of the discount bond;
otherwise, the firm goes bankrupt, and the bond holders take over
the firm and get Z;. One way to compute D; is to use (6.2.3):

-~ B
Dj = pE | min[;, k] (-g;) . (6.14.1)
We can, however, use the Black-Scholes option pricing formula $o
compute I); in a direct and straightforward way. Note that the
time-1 payoff to the equity holders is max[%; — k,0}, When the firm
is solvent at time 1, the equity holders pay off the bond holders and
get the residual value of the firm, which is £; — k; otherwise, the bond
holders taks over the firm, and the equity holders get zero, Therefore,
the equity holders are holding a European call on the total value of
the firm with an exercise price k& maturing at time 1. The value of

the equity is
S = Vil (Zx + o) = (1+ 1) kN (2)

; 6.14.2
where Zk = in(v’/k) = 111(1 + rf) - %O‘j. ( )

73
From the comparative statics of Section 6.13, we know that, ceteris
paribus, the value of the equity decreases as the face value of the
bond increases, and increases as o increases, that is, as the total
time-1 earning of the firm becomes more volatile. When the total
" value of the firm V; is fixed, the increase in o; shifts value from the
debt holders to the equity holders.
The value of the discount bond is
Dy =V; - 5;
= V;(]. - N(ZJ; + 0'_7')) + (1 + T_{)"IkN(Zk).
It increases as its face value increases and decreases as the earnings
of the firm become more volatile,

We give two interpretations of a risky debt. The time—1 random
payoff of the debt can be written as

(6.14.3)

min(E;, k] = £; — max{%; — k,0] (6.14.4)
=k — max{k — Z;,0]. (6.14.5)
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Using (6.14.4), the bond holders can be viewed as holding the firm
while selling a European call option on the value of the firm with an
exercige price equal to the face value of the debt to the equity holders.
We used this interpretation to compute (6.14.3). On the other hand,
{6.14.5) implies that the bond holders are holding a riskless discount
bond with a face value k, while at the same time selling a European
put option on the value of the firm with an exercise price k. In
the event that the firm’s time-1 earnings are strictly less than k,
the equity holders will zell the firm to the bond holders at a price
k. Since Z; is lognormally distributed and there, therefore, exists a
strictly positive probability that the firm will default on the debt,
the put option of (6.14.5) is not worthless, and the debt is risky.
Therefore, the discount bond will sell at a price strictly less than
k/(1 + ry) and has a strictly positive risk premium.

6.15. Not all securities in strictly positive supply can have
payoffs that are jointly lognormally distributed with time-1 aggre-
gate consumption, since the sum of lognormally distributed random
variables is not lognormally distributed. Under the conditions of Sec-
tion 6.10, however, we can always use {6.10.10) and (6.10.13) to price
European call options on the aggregate consumption/wealth. Recall
from Section 5.19 that these option prices can, in turn, be used to
price any complex securities,

Let p.(k) denote the price of a European call on aggregate con-
surnption with an exercise price k maturing at time 1. Then

Pe(k) = S N(B, +6.) — (1+rs)" 1 k N(Z), {6.15.1)
where
2= In(5./k) -I:ln(l trr) }"&c, (6.15.2)
Gy 2
&2 = Var(ln(&)), (6.15.3)
and
é -8B
S.=pE |C (—) (6.15.4)
Cop

15 the present value of the time—1 aggregate consumption.
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The price for one unit of consumption paid in states where the
time 1 aggregate consumption is equal to k is
2
2.()= L28a = (14 ok nmIak. (6159)
Since the probability that time-1 aggregate consumption will be
equal to any fixed k is formally equal to zero, ®.{k} is equal to
zero. {Mathematically, dk is treated as zero.) The pricing density
po(k) = 8.(k)/dk, is strictly positive, however.

We can do a comparative statics analysis of ¢.(k). The elas-
ticity of (k) with respect to an increase in the value of S. is ana-
lyzed holding the distribution of (6’ /8.) constant thereby implying
a proportional change in €. The resulting increase in probabilities
of “high" levels of & and decrease in probability of “low” levels of
€ increase and decrease, respectively, their elementary claim prices.
This elasticity’is

’ dlng(k) _ _Z
_ dlnsS, = &
Note that .2y, is a strictly decreasing function of k and

(6.15.8)

lim Z), = oo, lim Zp = —ca.
kD) ko0

Therefor;, (6.15.6) is positive for high k and negative for low k.
The elasticity of ¢.(k) with respect to the standard deviation,

Fe, 13
3o (k)
dné.

This elasticity will be positive for very large and very small k and will
be negative for k near E(é), because an increase in variance increases
the probability of extreme observations relative to the probability of
central observations.

The elasticity of the elementary claim price with respect to the
riskless bond price, {1+ r;)71,is

={(Zr+&)8 -1 (6.15.7)

dmgek) _ . %
Al +r)t T3, (6.15.8)

Thus, an increase in the riskless bond price lowers the prices of claims
that pay off when the level of ' is high and raise the prices of claims
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that pay off when the level of € is low. However, since (1 +r;)"% =
7% ¢o(k)dk, an increase in (1 + r;)~! must increase the average
elementary claim price. From (6.10.6) and (6.10.8), a change in the
bond price may be associated with either a change in the expected
growth rate of aggregate consumption and/or a change in relative
risk aversion. Both these possibilities would provide an intuitive
explanation for the resulting irmpact on elementary claim prices

6,16, We analyzed the comparative statics of ¢.(k} with re-
spect to the parameters of the economy in the previcus section. We
can also extract some information on the structure of ¢.(k) for dif-
ferent levels of k. The elasticity of 4.(k} with respect to the level of
consumption on which it is contingent is

alng.(k) _ Z
m"" — 'é: - 1. (6-16-1)
For levels of k far below E(G), the elasticity will be positive be-
cause the probability density for € increnses as k increases. For k
well above E(C‘), the elasticity will be negative due to the combined
effects of the decreasing probability density of the level of consump-
tion on which the elementary claim is contingent and of decreasing
marginal utility of consumption.

6.17. Previous analyses demonstrated that lognormally dis-
tributed aggregate time-1 consumption and constant relative risk
aversion utility functions for the representative agent are sufficient
conditions for the Black-Scholes option pricing formula to price Eu-
ropean options on aggregate consumption correctly. Given that time-
1 aggregate consumption is lognormally distributed, a constant rel-
ative risk aversion utility function for time-1 consumption for the
representative agent turns out to be also necessary for the Black-
Scholes formula to price European options correctly. Recall that
the pricing density of an elementary claim on aggregate consump-
tion divided by the probability density of occurrence of that level of
aggregate consumption is the marginal rate of substitution between
present consumption and future consumption for the representative
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agent. The elasticity of this ratio with respect to aggregate consump-
tion is constant if and only if the representative agent’s utility func-
tion for time—1 consumption exhibits constant relative risk aversion.
The probability density of a given level of aggregate consumption k,
given S, is

(2r52) 1

mo(l) = S

1 k 2
—[In(z) - (v —62)/2 6.17.1
o{ ppsli(E) - (w=aB/2 ) (61)
Therefore, the price density of an elementary claim on aggregate
consumption divided by the probability density of the occurrence of
that level of aggregate consumption is

—In(1+r —In(1+r n(1+rz)=22
o) exp[# infir7) 1 (5, /) + (ol lueinlitey) a;)]
me(k) B (T+ry) -
(6.17.2)
The elasticity of (6.17.2) with respect to k is
cCH L) P s S (6.17.3)

dlnk

e

which is a constant. Exercise 6.5 will ask the reader to show that
the negative of the above elasticity is the coefficient of relative risk
aversion for the representative agent’s utility function for time 1 con-
sumption. Thus, using the Black—Scholes formula to price options on
aggregate consumption is implicitly assuming that individuals’ util-
ity functions for time-1 consumption aggregate to a constant relative
risk aversion utility function.

6.18. In this section we will use (6.15.5) and the pricing relation

of (5.19.3) to derive the values of assets with time-1 payoffs that are

jointly lognormally distributed with time-1 aggregate consumption.
It will be shown that the values of such assets are appropriately
determined by using a version of the CAPM.

We will use the setup and notation of Sections 6.10 and 6.15.
Let %; be jointly lognormally distributed with time-1 aggregate con-
sumption with parameters specified in Section 6.10. From relation
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(5.19.3), we know that

+oo -
5; = fo $o(K)E[3|C = K]dk. (6.18.1)

Substituting (6.15.5) into (6.18.1) gives

1

+oo 5 =
Sj = m’/; k™ n(Zk)E{i,lC = k]dk (6.18.2)

The distribution of In z; conditional upon InC is a normal distribu-
tion with mean

1 - 1
i — Eaf. +InS; + Be(lnC —In S, — A, + Ea;),
and variance

U; - ﬂjcgjc;

where we recall that 4; = E[ln(Z;/5;)], where o, = Cov(ln £;,InC),
Bje = 0./ (0;6¢), Be = E[In(C/S.)], and S, is defined in (6.15.4).

Note that if Z is lognormally distributed, with Efln Z] = p. and
Var(In ) = o2, then E[%] = exp{p, + ¢2/2}. It follows that

B(310 = K
=exp {].Ii SJ' + @i+ ,6,-0 (ln(k/Sc) — fe+ 0’,2/2) - ﬂ,—ccr,-c/z} 3
(6.18.3)

Now substituting (6.18.3) into (6.18.2) and integrating gives

S; = exp{— (In(1+rs) + Bie(Be — In(1 + 7))} B[Z,].  (6.18.4)
This implies that
ln(E[:'Ej]/Sj) =In(1+ r7)+ Bic(fe — In(1+ rf)). (6.18.5)

As time-1 aggregate consumption is equal to time—1 aggregate wealth,
fie = Elln(1+ f5,)] and

_ Cov(ln(1 + 7;),In(1 + Fm))
o(ln(1+ 7;))e(ln(l+ m))’

Bim = Bie (6.18.6)
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where 7, is the rate of return on the market portfolio and #; is the
rate of return on security 5. Thus {6.18.5) can be written as

In(1+ E[7]) = In{l+rf) + Bim{ BlIn{l + )] = In(1+rs}). (6.18.7)

That is, the log of the expected rate of return on security § satis-
fies a CAPM-like relationship with a beta defined in (6.18.6}. Once
Bim is known, the present value of security 7 can simply be com-
puted by discounting its expected time—1 payoff at the exponential
of the continuously compounded risk adjusted discount rate, which
is (6.18.7).

Exercises

6.1. Derive a pricing relation similar to {6.3.3) when individuals have
log utility functions.

6.2. Show that the price of a Buropean call option is a decreasing
function of its exercise price, and find the conditions under which
it is a strictly decreasing function of its exercise price.

6.3. Let P;(S;,%) be the price of a European put on security § with
an exercise price k maturing at time 1. Show that F; is an
increasing funciion of % and that, when the probability that
£; < k lies strictly between 0 and 1,

R.‘(S,',k) > max[k/(l + r;) - S_,-,O].

6.4. Verify relations (6.13.1} to (6.13.5).

6.5. Prove that (6.17.3) is the relative risk aversion of the represen-
tative agent’s utility function for time—1 consumption.

6.6. We derived the Black-Scheles option pricing formula by assum:
ing that the representative agent’s utility functions for time-0
as well as for time-1 consumption are of constant relative risk
aversion. Derive a similar pricing formula by assuming only that
the representative agent’s utility function for time-1 consump-
tion exhibits constant relative risk aversion.
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Remarks. The discussion on skewness preferences follows Kraus and
Litzenberger (1976, 1983). Discussions in Sections 6.5-6.0 are taken
from Merton (1973), in which readers can also find a host of related
subjects. Our derivation of the Black—Scholes option pricing formula
is from Rubinstein (1976). Unlike the original Black-Scholes deriva-
tion, Rubinstein’s derivation uses equilibrium arguments. Black and
Scholes (1973) use arbitrage arguments and derive their formula in
a continuous time economy. Merton (1973) formalizes and extends
the Black-Scholes results. Cox, Ross, and Rubinstein (1979) also use
arbitrage arguments to derive an option pricing formula in a discrete
time economy by assuming that risky stock prices follow a binomial
random walk., This subject is covered in Chapter 8. They show
that their formula converges to the Black—Scholes formula when the
trading intervals shrink to zero and when appropriate limits of their
price system are taken. The application of the Black-Scholes op-
tion pricing formula to the pricing of corporate risky debt is adapted
from Merton (1974). The discussions in Sections 6.15-6.18 are taken
from Breeden and Litzenberger (1978). An option pricing formula
under the assumptions that individuals have negative exponential
utility functions and that asset returns are multivariate normally
distributed is derived by Brennan (1979). For a review of the recent
developments in option pricing theory and its applications see Cox
and Huang [1987).



